Topic Test 1 (20 minutes)

Vectors - Higher

Use this diagram to answer questions 1 and 2
The diagram shows three vectors, \mathbf{a}, \mathbf{b} and \mathbf{c}.

1 Write, in column form, the vector that is
parallel to \mathbf{b} twice as long as \mathbf{b}.
[1 mark]

$$
\text { Answer }(
$$

2 Which of the following is true?
Circle your answer.
$\mathbf{a}=\mathbf{b}+\mathbf{c}$
$a-b=c$
$\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}$
$\mathbf{a}+\mathbf{b}=\mathbf{c}$
$3 \quad$ Two vectors \mathbf{p} and \mathbf{q} are shown on the grid.

3 (a) Write, in letters, any vector equal to $2 \mathbf{p}-\mathbf{4 q}$

Answer

3 (b) Draw, on the diagram, the vector representation of

$$
(\mathbf{p}-2 \mathbf{q})+(-2 \mathbf{p}+\mathbf{q})=-(\mathbf{p}+\mathbf{q})
$$

4 Work out the value of c.

$$
\binom{c}{5}+2 \times\binom{ 3}{d}=\binom{d}{8}
$$

\qquad
\qquad
\qquad

$$
c=
$$

\qquad

5 Work out the transformation that maps shape A to shape B.

[2 marks]

6 Triangle T is mapped to triangle R by a translation of $\binom{-3}{-2}$
Draw triangle R on the grid.
[2 marks]

$7 \quad O A B C$ is a quadrilateral.
L, M, N and R are the midpoints of $O A, A B, B C$ and $O C$ respectively.
$\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$ and $\overrightarrow{O C}=\mathbf{c}$.

Not drawn accurately

Work out the following vectors in terms of \mathbf{a}, \mathbf{b} and \mathbf{c}.
7 (a) $\quad \overrightarrow{O R}$
[1 mark]

Answer

7 (b) $\overrightarrow{C N}$
[1 mark]

Answer

7 (c) $\overrightarrow{L M}$
\qquad
\qquad
\qquad
$8 \quad O A C B$ is a parallelogram.
$\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$
M is on $O C$ such that $O M: M C=3: 1$
$B M$ is extended to meet $A C$ at N.

Not drawn
accurately

8 (a) Write $\overrightarrow{O M}$ in terms of \mathbf{a} and \mathbf{b}.

Answer

8 (b) Write $B \vec{M}$ in terms of \mathbf{a} and \mathbf{b}.
[2 marks]
\qquad
\qquad
\qquad

Answer

8 (c) Given that $B M: M N=3: 1$, show that $A C: N C=3: 1$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow

